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1.  INTRODUCTION 

A promising solid-state laser material being investigated is 
LiYF^ multiply doped with triply ionized holmium (Ho), thulium (Tm), and 
erbium (Er), the last two of which assist in selectively exciting the 
laser-active Ho. It is important to understand the role of Tm and Er 
from a quantitative point of view, to give some theoretical guidance to 
the optimum proportion of these dopants and to suggest other possible 
multiply doped systems. 

This report is a preliminary theoretical incursion into this 
problem. A simple two-dopant model with phenomenological interactions 
is postulated. It displays the following properties that are observed 
in real systems: 

(a) Population inversion between two levels of a given species A 

(b) Excitation transfer from a second species B (donor) to the 
species A (acceptor) 

(c) Concentration dependence of the behavior of the system 

(d) Temperature effects 

(e) Cavity-Q effects 

Although in many instances the simplest nontrivial assumptions are 
made, the analysis is expected to develop some conceptual insights into 
the physical processes operative in an actual system and to stimulate a 
more detailed and physically related treatment. Accordingly, the best 
known functional dependence of some of the parameters on, say, 
concentration or temperature may not have been ascribed, but have been 
introduced phenomenologically to produce known results in limiting 
cases. 

2.  MODEL 

Let us consider the two-species system shown in figure 1. The 
levels have been numbered sequentially for convenience of notation, 
although levels 1, 2, and 3 belong to species A, and levels 4 and 5 
belong to species B. Let the time rate of change of the population of 
various levels be influenced by the following interactions: 

(a)  -a,, (ni - n-i\ , stimulated emission and absorption between ith 
-1 y J'  and jth levels, 
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Figure 1.  Population inversion between levels 3 and 2 is aided by 
excitation transfer between levels 5 (of species B) 
and 3 (of species A). 

(b) -Sijni, 

(c) -xijninj 

spontaneous emission from ith to jth level, 

excitation transfer from the ith level  of 
species B to jth level of species A, 

where 

ni = Ncifi (1) 

is the number of occupied ith levels, N is the total number of sites 
capable of being occupied by either species A or B, c. is the relative 
concentration of the species to which the ith level belongs, and f. is 
the fractional population of the ith level.  Thus, 1 

ci = C2 = C3 = c; 

c4 = c5= cB  , 

CA + CB - X ' 

f! + f2 + f3 = 1 

£n  + f 5 - 1 . 

(2) 

(3) 

(4) 

(5) 

(6) 

Conservation of species is assured by the rate equations, which are 

n5 = -a5i+(n5 - n4) - ssi+ns - X53nsn! , (7a) 

(7b) m,  - a5l+(n5  -  nk)   + s54n5  + x53n5n1   , 



and 

n3 = -a32(n3 - n2) - a31(n3 - 14) -  (s32 + s31)n3 + x53n5ni , (8a) 

n2 " a32(n3 " n2) - a2l(n2 " nl) " s21n2 + s32n3 > (8b) 

ni = a3i(n3 - ni) + a2l(n2 - ni) + S2in2 + S3m3 

- x53n5ni , (8c) 

whence 

115 + n^ = h3 + n2 + hi = 0. (9) 

2.1  Stimulated Emission and Absorption Coefficient "a" 

The stimulated emission and absorption term between levels i 
and j populates or depletes a level, depending on whether the population 
of the other level is greater or less than its own. When the lower 
energy level is more populated, there is a net absorption of any 
radiation of frequency Vij. The a-• factors, among other things, are 
proportional to the radiation power available at the particular 
frequency v^j. For this model, levels 5 and 3 are assumed externally 
pumped, so that 

35i* = Pa54 » (10a) 

a3i = PCX31 , (10b) 

where P is the external pump power. 

As these two levels are pumped, some power appears in the 
system at the frequencies v32 and V21- This power is assumed 
negligible, except for the power z of frequency v32 in the laser mode to 
which the system is tuned with some Q. The time rate of change of the 
laser frequency power inside the cavity is 

z = N-1b32(n3 - n2) z + N
-1ns32n3 - v32z/Q (11) 

As shown, the first term feeds or depletes the power, just as the 
stimulated emission and absorption term feeds the level populations. 
The second term represents the fraction n/N of the spontaneous emission 
at frequency v32 from level 3 that goes into the laser mode. The third 
term represents the power lost per unit time  and is inversely 



proportional to the cavity Q. Transmission loss of the laser mode 
within the cavity is assumed negligible, so that all of the last term 
represents usable radiated power from the cavity. Similar to 
equations (10a) and (10b), 

a32 = ZCX32 . (12a) 

For a2], the following choice is made: 

a2i = S21 [exp(v2i/kT) - l] (12b) 

which maintains level 2 at the Boltzmann value when the pump power is 
turned off. All other levels are assumed sufficiently distant from 
their corresponding ground level to be negligibly populated at normal 
termperatures. 

2.2 Spontaneous Emission Coefficient "s" 

The spontaneous emission term between levels i and j depletes 
the upper level and populates the lower level. Spontaneous emission due 
to radiation and some nonradiative processes are implicitly contained in 
this term. All the s.. are assumed to have a concentration dependence 
of the form 

>>"]" »ij "I1" (=A 
+
 <=B) ' (13> 

where it is recalled by equation (4) that 

CA + CB 1 !' 

This arbitrarily chosen dependence provides, phenomenologically, a 
quenching of the system due to coupling between ions as more 
activators B or lasing ions A are added. The optimum concentrations in 
this model obviously depend on the value chosen for M, but are clearly 
somewhat less than maximum. 

In order that continuous-wave (CW) inversion can be established 
between levels 3 and 2 in this model, it is assumed that 
s21 > s32 + s31- This assumption is consistent with the observed long 
lifetimes of fluorescing (lasing) levels. 



2.3  Excitation Transfer Coefficient "x" 

This model assumes excitation transfer occurs only from level 5 
to level 3. The rate of transfer is assumed proportional to the 
population of level 5 and to the population of level 1. This excitation 
process implies that, simultaneously to the transition of an atom of 
species B from its excited state 5 to its ground state 4, a phonon of 
energy v53 is created, and there is an excitation of an atom of 
species A from its ground state 1 to its excited state 3. 

The neglect of reverse excitation in this model is tantamount 
to assuming that V53/KT is sufficiently large so the probability is 
essentially zero of reverse excitation of level 5 with the simultaneous 
annihilation of a phonon. In this model, some value is assigned to x 
where 

x = Nx53. (14) 

3.  CONTINUOUS-WAVE OPERATION (STEADY-STATE SOLUTION) 

Substituting n^ = Nc^f^ and NX53 = x i-nto tne  linearly  independent 
equations (7a), (8a), and (8b) gives for the steady-state equations 

f5 = -a54(f5 " fk)   ~   s54f5 " xcA
f5fl = °' (15a) 

f3 = "a32(f3 " fl)   ~   a3l(f3 " fl) " (B32 + s3l)f3 

+ xcBf5fl = 0 , (15b) 

f2 • 
a32<f3 " f2) " a2l(f2 " fl) " S21f2 + s32f3 = °'     (15c) 

z = b32cA(f3 - f2)z - v32z/Q + ns32cAf3 = 0 , (15d) 

which, together with 

fl  =  1 -   f2  -   f3   , (16a) 

fit  = 1 -  f5   , (16b) 

a5£»   =  PC154   , (16c) 



a3i  = P«31 

a32   =  za32 

(16d) 

(16e) 

solve the system. 

The  results  are 

f5  = as^ast*  +  S54  + xcAfiJ-1, 

r / GlS32Qu \ 
|Ja2i  +  s21)(l -  u)   -   ^32+  ! _  G2QU /   d  + u)J 

[Gls32Qu    "I"1 

3a21   + S21   -  S32  -  r^G&u 

(17a) 

Gis32Q 

1 -  G2Qu 

u -  fA 

20132     \!   -  G2QU 

f2   =   (1 -  u -   fJ/2 

f3   =   (1   +  u  -   fi)/2 

Gi   =  nct32/V32 

G2   = b32CA/v32 

where the  inversion,  u,  is defined by 

u • f 3 - f2 

The inversion is related to P by 

F(P,u)   = 0 

with 

F(P,u)   = (2a5t+ + s51+  + xcAfi) [a31(l + u -  3fJ    +  2a32zu 

+  (S32  +  S31) (1  +  u -   fx)]   -  2xcBa51+   . 

(17b) 

(17c) 

(17d) 

(17e) 

(17f) 

(17g) 

(18) 

(19a) 

(19b) 

10 



This    expression   (through as^  and    a3j)     is    quadratic    in    P    with     the 
solution 

p - "bo + [bo + b0 ^    > (20) 

where 

b0 = [4051*031 (3fi  -   1  -  u)]"1 

x   2xcBa5i4fl   + a3i(3fi   -  1  -  u)(s5»t  +  x<=Afl) 

-  2a51+[2a32zu +  ( s32  +  83i)(l  + u -   £\)~\\   , (21a) 

bj = [2051,03! (3fi - 1 - u)]_1 

x[s54 + xcAfl][2o32ZU + ( S32 + S31) ( 1 + u - fi)J. (21b) 

At P = », f3 = fl, which implies that 

3f1 » 1 + u, 

where fj is given in terms  of u by equation (17b).  The solution for 
tLjj* is the smaller root of the quadratic 

Au2 - Bu + C = 0 , (22) 

where 

A  =  [G2(3a21   +   2sn   +   S32)   -   GIS32]Q   , (23a) 

B = 3a2i  +  2S21  +  S32 + [G2(S2I  -  s32) +  G1S321Q     , (23b) 

C  =  S21   -   S32   . (23c) 

*UMAX means u evaluated at PMAX' i«*«/ at P = °°. It is later shown 
that maximum u is attained at P = <*> only if Q > Qc, where Qc is defined 
in section 4. 

11 



It has been assumed that S21 > s31 + s32, which is a necessary condition 
for laser action, so each of these quantities is positive.  Thus, 

-«x - lr - [(k)2 -1]" 
gives a real positive solution, since it may be shown also that 
B2 > 4AC. At P = 0, the population of level 3 vanishes (f3 = 0), so 
from equation (17e) , 

fl = 1 + u , 

which gives 

*21 
UMIN ' " 2a2 j + s21 • "t 

+ exp(v2iAT)] (25) 

or from equation (12b) , 

f2/fi = exp(-v2i/kT) (26) 

as required. 

As the pump power is increased from 0, u increases (not 
necessarily monotonically) from the negative value given by 
equation (25) to some Q-dependent positive value at P = " given by 
equations (23) and (24). For Q < QQ, u peaks at some power P < °° and 
then tends to u„AV as follows: MAX 

U, < u -*•  u   (0) (27a) 
MIN -      MAX v 

for 

0 < P •* °° . (27b) 

12 



The upper limit of u at P = °°, UMAX(Q) ' var^-es  with Q as 

S21 - S32 
0 1 UMAX £  3a21 + 2s21 + s32 <28a) 

for 

> Q > 0  . (28b) 

Thus, this model displays accurately the known result that a greater 
population inversion can be obtained if the cavity Q is kept low during 
the pumping cycle. This property sets up the possibility of suddenly 
increasing Q, after a large inversion is set up to force the stored 
potential energy to appear as laser radiation at the resonant frequency. 
This procedure is appropriately referred to as Q-switching. 

The exact point that may be designated as threshold is not too 
well defined. We define threshold as the point of inflection in the 
steep rise  of z with pumping power.  That is, P = P is defined by 

d2z _ 
dpT" ° ' 

where 

J§ > 0 . (29) 
dP 

Since z is a function of u and fi , fi is a function of u, and u is 
related to P through equation (19), it is possible to express the second 
derivative of z in terms of the parameters of the system. However, the 
prospect is not too appealing of finding the appropriate zero of the 
resulting expression (even if the expression could be contained on one 
page). The procedure for solving the system is to assign values to u 
between the limits indicated by equation (27); calculate fj and then z 
from equations (17b) and (17c); determine P from equations (20) , (21a), 
and (21b); and then evaluate f5, f2, and f3 from equations (17a), 
(17d), and (17e) , respectively. 

13 



4.  CRITICAL CAVITY Q (Q )  c 

Under CW operation, if Q is sufficiently large and the pump power is 
increased slowly, there is a value of P = P , the threshold power, for 
which a very rapid increase in the laser power, z, appears in the 
cavity. If, however, Q is less than some Qc (derived below), there is 
no rapid buildup of z, no matter how large P becomes. 

The peak value of u for Q > Q is u^^ given by equation (24) , which 
obtains at P = <*>. For Q < Q , u peaks where the two roots of P are 
equal; that is, where 

b2 = _bl (30) 

in equation (20).  For arbitrary Q, equation (29) is eighth degree in u 
and cannot be  solved  explicitly.  He 
equation (29) is valid simultaneously to 
Letting this value of u be u , one obtains 

and cannot be  solved  explicitly.  However, Q = Q      implies that 
equation (29) is valid simultaneously to u = u^^ where 3f = 1 + u. 

S21 + s3i - xcB/2 
uc = 3a21 + 2s21 - s31 + xc /2 *     ' 

and 

'c   c 

s31 + s32 " xcB/2 

G2(s31 + s32 -XCB/
2) ~ Gls32 

Q = u _1  —     • . (32) 

where G\ and G2 are given by equations (17f) and (17g). For Q < Qc, 
there is insufficient buildup of laser power to deplete the inversion, 
so u continues to increase with pump power to a value larger than 
3f} - 1, which implies f3 > fj. As the pump power is increased still 
further, it tends to deplete f3 to establish f3 = fi at P = °°; thus, u 
decreases with power for P > P . This behavior is a consequence of the 
model, which assumes pumping directly into level 3, the lasing level. 

For Q < Q ,  therefore,  no laser action is possible in this system, 
whatever the pump power might be. 

14 



5.  Q-SWITCHING (DYNAMICAL SOLUTION) 

The behavior of this system under Q-switching is governed by the 
rate equations and the initial values of the parameters. To simplify 
notation, let 

U - f3 - f2 , (33a) 

v = fi , (33b) 

W - f5 , (33c) 

in which case equations (15) become 

u = (a21 + s21 - a31 - s31 - 2s32)/2 

+ (3a3i + S3! + 
2S32 - 3a2i - s2i)v/2 

+ (a3i + 631 
+ 2S32 + a21 + s2i)u/2 

+ 2ot32zu + xcBwv , (34a) 

v = (a3i + S3i + a2i + s2i)/2 

-(3a31 + S3l + 3a2i + s2l)v/2 

+(a3i + S3i - a2i - s2i)u/2 

'B (34b) 

w = astt (1 - 2w) - S54W - xcAwv , (34c) 

z = b32cAzu - v32z/Q + ns32c (l + u - v)/2  .       (34d) 

15 



These nonlinear, coupled equations are easily solved numerically by 
assigning values to u , v , w , and z at t = 0 and calculating the 
evolution of the system by uj = u + uAt, etc., for sufficiently 
small At. 

Initial values may be obtained by setting Q = 0 and pumping at 
P = P , where P is the power for Q = 0 that gives the largest 
inversion. Then at t = 0, one may turn off the power and switch Q to 
some large value and see how the system evolves. It is found that if Q 
is kept constant after t = 0, the output power, V32Z/Q, peaks at later 
times, the larger the Q; and the peak power output is higher for some 
Q > 0, depending on the parameters of the system. If Q is switched back 
to Q = 1 when the power in the cavity peaks (it will peak at later 
times, the higher the Q) , a large spike in output power occurs at that 
point. The average output power is greater, the greater the Q, but 
saturates at some Q < °°. 

6.  RESULTS AND DISCUSSION 

Figure 2 plots the inversion as a function of pump power for typical 
Q less than, equal to, and greater than Qc. For Q-switching, maximum 
inversion is established by pumping at P with Q = 0. Figure 3 shows 
the variation of laser power z, in the cavity as a function of Q at 
infinite pump power. The "break" in the curve at Q = Q indicates, as 
stated previously, that there is no appreciable buildup of laser power 
for Q's below this value. 

This system was examined under two types (A and B) of Q-switching. 
In both types, maximum inversion was initially established by setting 
P = P and Q = 0. In type A, the pump power was cut off, and Q was 
increased instantly to some positive value at t = 0 and kept constant 
thereafter. In type B, everything proceeded as in type A, except that 
when the cavity laser power reached its maximum, Q was lowered to Q = 1 
(cavity dumping) and kept at this value thereafter. The time at which 
this lowering of Q (to dump the cavity power) occurs depends on the 
initial rise in Q—taking longer, the larger the Q. 

Figure 4 shows the time variation of output power (the V32Z/Q term 
in equation (11)) for Q-switching of type A. Peak output power occurs 
at later times for larger Q, and the largest pulse occurs at some 
intermediate Q value. Figure 5 shows the variation with Q of the peak 
output power and the time at which it obtains. 

16 



Figure 2.  Inversion (u = f$  -  £2)   as a function of pump power 
P for Q <, =, > Qc)   the critical cavity Q, below 
which no laser action obtains. 

100 r 

X < 

100 

Figure 3.  Laser power z in cavity versus cavity Q at infinite 
pump power (below Q = Q    = 37.9026 there is no 
oscillation. 
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2 3 
TIME (ARBITRARY UNITS) 

Figure 4.  Power output versus time for several Q in type A 
Q-switching. 

100 200 300 400 500 600 700 800 900    1000 

Figure 5.  Peak output power (solid line) achieved at time 
(dashed line) as functions of Q in type A 
Q-switching. 
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Looo r CAVITY DUMPING 

Figure 6.  Power out versus time for two different Q in type B 
Q-switching. 

Figure 6 shows the time variation of output power for Q-switching of 
type B. A large spike (cavity dumping) occurs when the Q is 
instantaneously lowered after the cavity laser power has reached 
maximum. The average output power keeps increasing with Q for this type 
of Q-switching, till it saturates at some finite Q when, presumably, all 
the energy that can be retrieved from the system has been retrieved. 
The maximum average output power and the time over which it is averaged 
are plotted as functions of Q in figure 7. The product of the two 
curves gives the total energy output in that time. 

The values chosen for the system's parameters for these calculations 
are given in appendix A. It is cautioned that no attempt has been made 
in this preliminary report to assign physically meaningful numbers to 
the parameters. The numbers were chosen to display the properties of 
the model for convenient values of Q, time, and power. 

19 



3 

200 400 600 800 1000 

Figure 7.  Maximum average power out and time over which it is 

delivered as functions of Q for type B Q-switching 

(energy out is product of two curves). 

20 



APPENDIX A.—PARAMETER VALUES 

Values for the parameters used in these calculations are 

v2i =1 
a31 = 3 

kT = 1 0132 = 3 

V32 = 100 054 = 3 

D32 = 100 S21 = 100d 

H = 0.2 S31 = S32 = S51+ = d 

CA =  0.1 

CB  =  0.6 

d =   [l -   (0.7)6]-1   =  1.13333 

a21   =  S2i[exp(v2l/kT)   -  lj-l 

x =  10 

M = 6 

With  these values,  we obtained 

S31   =  S32   =  S5i+   =   1.1334, 

S21   =   113.334, 

a21  = 65.9575, 

Q„ =  37.9026 

21 



APPENDIX A 

At zero pump power, the relative populations of the various levels are 

f3 = f5 = 0 , 

fH  - 1 , 

f2 = 0.268941  , 

fl = 0.731059 . 

There is substantial occupation of the terminal laser level (level 2), 
owing to the relatively small value of v21/kT = 1 chosen above. 

The values at t = 0 in the Q-switching modes that are established at 
Q = 0 and P = P = 2.07445 prior to t = 0 are 

uQ • 0.277819 , 

vQ = 0.412911 , 

wQ = 0.444749 , 

zQ = 0 . 

22 
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